skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Buryak, Alexandr"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract We lay the foundation for a version of $$r$$-spin theory in genus zero for Riemann surfaces with boundary. In particular, we define the notion of $$r$$-spin disks, their moduli space, and the Witten bundle; we show that the moduli space is a compact smooth orientable orbifold with corners, and we prove that the Witten bundle is canonically relatively oriented relative to the moduli space. In the sequel to this paper, we use these constructions to define open $$r$$-spin intersection theory and relate it to the Gelfand–Dickey hierarchy, thus providing an analog of Witten’s $$r$$-spin conjecture in the open setting. 
    more » « less